Polars: Blazing Fast Python Framework for Clinical Trial Data

High-performance data exploration with Apache Arrow

Python
Clinical Reporting
Advanced
Authors

Michael Chow (Principal Software Engineer, Posit)

Jeroen Janssens (Head of Developer Relations, Posit PBC)

Overview

Intermediate Python Performance

Polars is a cutting-edge Python DataFrame library with high-performance backend and Apache Arrow columnar format for blazingly fast data manipulation. Learn how it accelerates clinical trial workflows from database querying to TFL preparation.

What You’ll Learn

  • Polars fundamentals - Lightning-fast data operations
  • 🏗️ Apache Arrow - Columnar data format
  • 📊 Clinical workflows - CDISC data processing
  • 🔗 Pharmaverse-py integration
  • 📈 Great Tables - Data presentation

Prerequisites

Required Knowledge:

  • Intermediate Python
  • Basic pandas experience helpful
  • Understanding of clinical trial data

Key Technologies

Polars

Apache Arrow

Great Tables

pharmaverse-py

Workshop Materials

NoteResources

Why Polars?

Performance Advantages

  • 🚀 10-100x faster than pandas for large datasets
  • 💾 Memory efficient with lazy evaluation
  • 🔄 Parallel processing out of the box
  • 📦 Apache Arrow native format

Polars vs Pandas

# Pandas (traditional)
df = pd.read_csv("adsl.csv")
result = df[df['AGE'] > 65].groupby('ARM')['AGE'].mean()

# Polars (fast)
result = (
    pl.scan_csv("adsl.csv")
    .filter(pl.col('AGE') > 65)
    .group_by('ARM')
    .agg(pl.col('AGE').mean())
    .collect()  # Lazy evaluation
)

Clinical Trial Applications

1. Database Querying

  • Fast SQL-like operations
  • Efficient joins across SDTM domains
  • Lazy evaluation for large queries

2. Complex Data Wrangling

  • Grouping and aggregation
  • Window functions for time-series
  • Pivoting and reshaping

3. TFL Preparation

  • Data summarization
  • Creating analysis datasets
  • Integration with Great Tables

Learning Outcomes

✅ Master Polars DataFrame operations
✅ Leverage Apache Arrow for performance
✅ Process clinical trial data efficiently
✅ Integrate with pharmaverse-py ecosystem
✅ Create TFLs with Great Tables


Similar Workshops

Next Steps


Last updated: November 2025 | R/Pharma 2025 Conference